Quadratic Questions
Example and Explanation
The diagram shows a right-angled triangle.

All the measurements are in centimetres.
The area of the triangle is $27.5 \mathrm{~cm}^{2} \quad 000$
Double the area means we can work more easily on a rectangle.
Work out the length of the shortest side of the triangle. You must show all your working.

$$
\begin{aligned}
& \text { Area of rectangle }=\text { length } \times \text { breadth }=2 \times \text { Area of triangle } \\
& =(x+4)(x-2)=55 . \circ 27-5 \times 2=55 \\
& \therefore(x+4)(x-2)=x^{2}+4 x-2 x-8=55 \\
& x^{2}+2 x-8=55 \\
& \begin{aligned}
& \Rightarrow x^{2}+2 x-63=0 \ldots \\
\text { Factors of } 63 & =\{(1,63),(3,21),(7,9)\}
\end{aligned} \\
& \begin{aligned}
& \text { Factors of } 63=\{(1,63),(3,21),(7,9)\} \\
& x^{2}+2 x-63=(x+9)(x-7)=0
\end{aligned} \\
& \therefore x=-9 \text { or } x=+7 \\
& \text { We like quadratic equations } \\
& \text { to equal zero as this } \\
& \text { allows us to solve them. } \\
& \text { allow's us to solve them. } \\
& =\underbrace{\left(\begin{array}{c}
(x+m)(x+n) \\
m \times n=-63 \\
m+n=+2
\end{array}\right.}
\end{aligned}
$$

As we cannot have a negative length, we discount $x=-9$ to yield the solution, $x=7$.
\Rightarrow The shortest length $=x-2=7-2=5 \mathrm{~cm}$.

Q1
The diagram shows a right-angled triangle.

All the measurements are in metres.
The area of the triangle is $27.5 \mathrm{~m}^{2}$.
Work out the length of the shortest side of the triangle.
You must show all your working.

Q2
The diagram shows a right-angled triangle.

All the measurements are in metres.
The area of the triangle is $26 \mathrm{~m}^{2}$.
Work out the length of the shortest side of the triangle.
You must show all your working

Q3
The diagram shows a right-angled triangle.

All the measurements are in centimetres.
The area of the triangle is $4.5 \mathrm{~cm}^{2}$.
Work out the length of the shortest side of the triangle.
You must show all your working.

Q4
The diagram shows a right-angled triangle.

All the measurements are in millimetres.
The area of the triangle is $30 \mathrm{~mm}^{2}$.
Work out the length of the longest side of the triangle.
You must show all your working.

Knowledge Test
1 Write an example of a binomial expression.
2 What polynomial has a term where the highest order is:
i. 2
ii. 5
iii. 3
iv. 1

3 For which shapes are these the formulae? State the meaning of each letter.

$$
\begin{gathered}
\text { Area }=\pi r^{2} \\
\text { Area }=l b \\
\text { Area }=\frac{1}{2}(a+b)
\end{gathered}
$$

$$
\text { Area }=\frac{1}{2} b h
$$

